¥

ONLIBASI

The ONLI extension to BASIC provides commands and functions for
real-time work, including timed intervals, control of outputs and
detection of external events. ONLIBASIC expects a negatively-going
pulse of 150-200 microseconds duration at 100 Hz to be present on the
IRQ line (pin 28B) of the processor card, and an 8254 or 8154 I/O chip
at page 09. This chip may be positioned as IC8 on the processor card,
and the lines accessed via the backplane, or may be provided together
with the 100Hz IRQ circuitry on Acorn's Laboratory Interface Board.
The I/0 chip provides two ports of eight lines each, known as PORTO
and PORT1, and as individual lines with numbers 0 to 7 (PORTO) and 8
to 15 (PORT1). These lines may be defined individually as inputs or
outputs. As outputs, they may be set high (turned on) and cleared low
(turned off) port at a time or individually. As inputs they may be
read as ports (high is on, and low is off), or treated individually as
"interrupts". The two ports are polled on every IRQ pulse, and so
"interrupts" must last at least 10 milliseconds to be detected.

A second 8154 or 8254 may be present at page 10. This provides
two further ports, known as PORT2 (lines 16 to 23) and PORT3 (lines 24
to 31). These lines may be treated in the same way as those in ports O
andl, with the exception that they may not be used as interrupts.

In addition, up to eight independent 32-bit software clocks may
be set to time out after an interval specified to the nearest 10
milliseconds (1 centisecond). The maximun time that may be specified
is 2%*31~1 centiseconds (about 2438 days). The current time in
centiseconds since the last START command (see below) is held in the
32-bit variable TIME. If TIME is read on two occasions, the difference
will give the time elapsed in between. If TIME exceeds 2**31-1, it
will go to -2**31 and then increment through 0 again. Even if one or
both of the TIME readings is negative, the difference will always be
positive and correct, provided it does not exceed 248 days.

An ONLIBASIC program can be conceived of as a series of
definitions of alternative outcomes, separated by HANGUP statements
(se2 below), during which the interproter stops while it discovers if
events have occurred. Events are noted on every IRQO pulse, but are not
acted upon until the next HANGUP statement is reached. For example, it
is required that a response must occur within a given interval.
Control of an interrupt is requested (see RQIN below), a clock is
started (see RCLK below), and then a HANGUP is specified. If the clock
times out before a response is detected, the interpreter will jump to
the 1line specified in the RCLK command and deal with the programnmed
cutcone; this includes relinquishing control of the interrupt (see REL
below). Since the interpreter takes time to reach the next HANGUP, an
interrupt mmight occur before control can be relinquished. This
interrupt will be noticed on the next IRQ pulse, but nothing can
happen wuntil the HANGUP is reached. Thus, the interrupt will be
cancelled by the REL command, even though it may have occurred in real
time before control was actually relinquished. In this way, impossible
situations cannot arisec.

CLI - command.

Syntax: CLI

Clears the interrupt flag in the processor status register, enabling

the 100 Hz IRQ clock. Equivalent to machine code £58.

CLR - command.

Syntax: CLR {(factor)

Turns off I/0 line number {factor), 0{= (factor) <=31. If the line is
already off or is defined as an input nothing happens.

Examples: CLRS8
CLRA
CLR(Z+2)
CLR(A!Z)

DEFPORT - command.

Syntax: DEFPORT {factor) = {(expression)

Defines I/0 port {factor), 0{(= (factor) ¢(=3; each line in the port is

defined as an dinput if the corresponding bit in the lowest byte of
{expression) is clear, and as an output if it is set..

Exanples: DEFPORTO0=0 (lines 0 to 7 are all inputs)
DEFPORTA=255 (PORTA is to be all outputs)
DEFPORT1=£¢F0 (lines 8-11 inputs, 12-15 outputs)
HAUGUP - coimand.
Syntax: HANGUP
Stops the interpreter, and waits until an interrupt occurs or a clock

times out.

KILL - command.

Syntax:; XILL

Cancels all requests for control of interrupts and clocks.

PORT - command.
Syntax: PORT Kfactor) = (expression)

mach line defined as an output in port number {factor), 0{= {Ffactor)
=3, is turned on if the corresponding bit in the lowest byte of
(expression)> 1is set, and turned off if it is clear. Lines defined as
inputs are unaffected.

Examples: PORTO=0 (all outputs in PORT0 are turned off)
PORTB=255 (all outputs in PORTB are turned on)
PORT2=¢F (lines 8-11 ON, lines 12-15 OFF)

PORT - function. R

Syntax: {variable) = PORT (factor)

Bach bit in the lowest byte of (variable) is set if the corresponding
line in PORT number <factor)> is high, and cleared if it is low,
regardless of whether it is defined as an input or an output.

Examples: A=PORTO

A?3=PORTZ
FORZ=0TO3;A?Z=PORT3Z ; NEXT

RCLK - command.

Syntax: RCLK (factor)>a , {factordb , {(go entity)

The clock number <(factor)a, 0<{= (factorda {(=7, is set running, and
will cause a Jjump to line <{go entity) after {(factordb centiseconds.
The time for which the <clock runs will be x, where {(factordb >x)
{factord>b -1. A clock requested for 0 centiseconds will be abandoned.
If <factorda is already running, the new values of (factor)b and <go
entity) supercede the old ones.

Rxanples: RCLK0,1000,a
RCLKY, (A!2),400
RCLK(Z/4),(A!'Z*100), (520+2)
RCLKY, (T*100), (C!X)

REACT - function.

Syntax: (variable)= REACT (factor)a , {factord>b , {(factor)c ,
{factor)>d

This function is designed for reaction timing. A pattern of outputs
is set (the stimulus) for a time specified in units of 200
microseconds, and the function waits for a limited time for one of a
specified set of inputs to occur (the reaction), whereupon it returns
the time between setting the outputs and the detected input, accurate
to 200 microseconds. {(factor)>a and (factor)b are 32-bit numbers, each
representing all four ports, with their lowest bytes as PORTO.
(factor>c and <(factor>d are times, specified in units of 200
microseconds. On entry, the interrupt flag is set, disabling the 100
Hz clock, and thus preventing any interrupts from being detected and
stopping all running clocks. All lines defined as outputs are set or
cleared according to the corresponding bits in {(factor)b. As soon as
any input 1line, whose corresponding bit is set in (factor)b, goes
high, the number of 200-microsecond cycles elapsed is returned in
(variable). After <(factor)d cycles (the stimulus duration) the outputs
are changed to the corresponding bit-pattern in {(factorda. If no
response is detected after {(factor)c cycles, the function returns with
(variable) = (factor)c. If any of the responses specified in {factor)a
is detected immediately after the outputs have been set, the function
returns with (variable) = 0. The interrupt flag is cleared on return.
If the reaction time is less than the stimulus duration ({factor)d),
the outputs will be in the state specified by (factor)b on return. If
(factor>d is made equal to <(factordc, and no response is detected, the
outputs will be in the state specified by {factorda on return. Since
the centisecond c¢lock will have bheen stopped for the duration of the
command, it may be updated by the use of the command TIME (see below):
eg. TIME = TIME + {variable) /50.

Bxamples _ Bwes s
R=REACTO0,31,25000,5000 (line 4 is turned on for
lsec; wvalid responses are lines 0,1,2 and 3; the
response nmust occur within 5 secs).

, [vims 1) Zo20 oS,

Al'Z=REACT32,17,10000,50 (line 4 is turned on for 1
centisec and then turned off with line 5 turned
on; only 1line 0 is a valid response, and it must
occur within 2 secs).

T=RIACT£10,£2F,X,(B!Y) (line 5 is turned on for
B!Y cycles,l%ﬁnd then changed to line 4; any of
yéées 0,1,2 "or 3 is a valid response, which nust
otcur within X cycles)

v;l”
REL - command. (AL

. Syntax: REL <{factor)

Relinquishes control of an interrupt (following RQIN) or abandons a
clock (following RCLK). A value of {(factor) between 0 and 15 causes
~the appropriate I/0 line to be ignored. A value of {(factor) between 16
and 23 abandons clock number {(factor)>-16 (ie. the corresponding clock
in the range 0 to 7). If line number {(factor) is defined as an output,
or control of the interrupt or clock has not been requested, nothing
happens.

Examples: RELO

RELZ
REL(A!'Z)

RQIMN - command

Syntax: RQIN (factor)>a , <{(factordb , {go entity)

Control of an interrupt on line number {(factor)b is requested. If the
least significant bit of (factor)a is set, a transition from low to
high will cause a jump to line {go entity)>. If the least significant
bit of <(factor)a is clear, a transition from high to low will cause a
jump. Once control of an interrupt has been requested, each transition
of the direction specified by <(factord>a will cause a jump until
control is relinquished with a REL or XKILL command. If (factor)b is
defined as an output, nothing happens. If control of {(factor)b is
already requaested, the new values of <(factor>a and <(go entity)
supercede the old ones.

Exanples: RQIN1,0,a
RQINO,Y,390
RQINB, (A!1Z2),(460+2)
ROQIN(Z/4),(CV'X/2),(J!'2)
SEI ~ command
Syntax: SEI

Sets the interrupt flag in the processor status register, preventing

the detection of interrupts, and freezing clocks and TIME. Equivalent
to machine code £78.

SET - command

Syntax: SET ({factor)

Turns on I/0 line number {factor), 0<{= {factor) <=31. If the line is
already on, or defined as an input, nothing happens.

BExXanples: SETS3
SETX
SET (246)
SET(A!'Z)

START - commmand .

Syntax: START

Clears the interrupt flag and starts the centisecond clock running
from 0; relinquishes all interrupts and abandons clocks, resetting
them to 0. This command must always be used after entry into BASIC.

TIME - command
Syntax: TIME = {expression)
The centisecond clock is set to the value of (expression).

Exanmples: TIME=T
TIME=TIME+T/50
TIME=A!Z*100+B12*6000

TIME -~ function

Syntax: (variable) = TIME
(variable) is set to the current value of the centisecond clock.

Examples: A=TIME
A=1000~TIMi
A=TIME/100
Al Z=TIME-X

